Основы Linux от основателя Gentoo. Часть первая

Об авторах

Перевод

Перевод выполнил Dmitry Minsky (Dmitry.Minsky@gmail.com)

Daniel Robbins

Дэниэль Роббинс — основатель сообщества Gentoo и создатель операционной системы Gentoo Linux. Дэниэль проживает в Нью-Мехико со свой женой Мэри и двумя энергичными дочерьми. Он также основатель и глава Funtoo, написал множество технических статей для IBM developerWorks, Intel Developer Services и C/C++ Users Journal.

Chris Houser

Крис Хаусер был сторонником UNIX c 1994 года, когда присоединился к команде администраторов университета Тэйлора (Индиана, США), где получил степень бакалавра в компьютерных науках и математике. После он работал во множестве областей, включая веб-приложения, редактирование видео, драйвера для UNIX и криптографическую защиту. В настоящий момент работает в Sentry Data Systems. Крис также сделал вклад во множество свободных проектов, таких как Gentoo Linux и Clojure, стал соавтором книги The Joy of Clojure.

Aron Griffis

Эйрон Гриффис живет на территории Бостона, где провел последнее десятилетие работая в Hewlett-Packard над такими проектами, как сетевые UNIX-драйвера для Tru64, сертификация безопасности Linux, Xen и KVM виртуализация, и самое последнее — платформа HP ePrint. В свободное от программирования время Эйрон предпочитает размыщлять над проблемами программирования катаясь на своем велосипеде, жанглируя битами, или болея за бостонскую профессиональную бейсбольную команду «Красные Носки».

Предисловие

Об этом руководстве

Добро пожаловать в первую из четырех частей обучающего руководства по основам Linux, разработанного чтобы подготовить вас к сдаче экзамена Linux Professional Institute 101. В нем вы познакомитесь с bash (стандартной оболочкой командного интерпретатора в Linux), узнаете о большинстве возможностей таких стандартных команд Linux, как ls, cp и mv, разберетесь в инодах, жестких и символьных ссылках, и многом другом. К концу этого руководства у вас сформируется некий фундамент знаний, и вы будете готовы к изучению основ администрирования Linux. К концу всего курса (8 частей), у вас будет достаточно навыков, чтобы стать системным администратором Linux и пройти сертификацию LPIC Level 1 от Linux Professional Institute, если конечно захотите.

Данная первая часть руководства отлично подходит для новичков в Linux, а также для тех пользователей, кто хочет освежить или улучшить свое понимание фундаментальных концепций Linux, таких, как копирование и перемещение файлов, создание символических и жестких ссылок, а также стандартных команд обработки текста, включая конвейеры и перенаправления. По ходу мы также дадим множество советов, подсказок и трюков, что делает это руководство насыщенным и практичным, даже для тех, кто уже имеет солидный опыт работы с Linux. Для начинающих большая часть этого материала будет новой, но более продвинутые пользователи Linux найдут это руководство отличным средством, чтобы разложить свои фундаментальные навыки по полочкам у себя в голове.

Тем, кто изучал первую версию этого руководства с целью, отличной от подготовки к экзамену LPI, возможно, что вам не нужно его перечитывать. Однако, тем же, кто планирует сдавать экзамены, стоит обязательно просмотреть данную исправленную версию.

Введение в bash

Оболочка

Если вы уже использовали Linux ранее, то наверняка знаете, что после входа в систему вас приветствует приглашение, которое выглядит примерно так:

$


На практике приглашение, которое вы видите, может немного отличаться. Например, оно может содержать имя хоста, имя текущей рабочей директории, или все вместе. Не зависимо от того, как выглядит ваше приглашение, есть одна несомненная вещь: программа, которая выводит это приглашение, называется оболочка интерпретатора команд (от англ. shell — оболочка, он же командная строка или терминал — прим. пер.), и, вероятнее всего, вашей командной оболочкой будет 'bash'.

А у вас запущен bash?

Вы можете убедиться, что используете bash, набрав:

$ echo $SHELL
/bin/bash


Если строчка выше выдает ошибку, или ответ не соответствует, возможно, что вы запустили другую оболочку. В этом случае большая часть этого руководства все еще будет полезна, но было бы значительно лучше для вас переключиться на bash, ради подготовки к экзамену 101.

О bash

Bash — это акроним от Bourne-again-shell, от англ. «ещё-одна-командная-оболочка-Борна» или «рождённая-вновь-командная оболочка» (тут игра слов Bourne/born — прим. пер.), и является оболочкой по умолчанию для большинства Linux-систем. Задача оболочки получать от вас команды, через которые вы взаимодействуете с Linux-системой. После того, как вы закончили ввод команд, вы можете выйти из оболочки (exit) или закончить сеанс (logout), в этом случае вы увидите приглашение входа в систему.

Кстати, вы также можете выйти из оболочки bash нажав control-D в приглашении.

Использование «cd»

Вы, возможно, уже обнаружили, что пялиться на приглашение bash — не самое впечатляющее занятие в мире. Ну что ж, давайте узнаем как путешествовать по нашей файловой системе. В приглашении введите пожалуйста следующую команду (без $):

$ cd /


Вы только что сообщили bash, что хотите работать в директории /, также известной, как корневая; все директории в системе имеют форму дерева, и / является его вершиной, т.е. корнем (в информатике деревья растут наоборот, корень вверху, а ветки спускаются вниз — прим. пер.). cd устанавливает директорию, в которой вы в данный момент работаете, также известную как «текущая рабочая директория».

Пути

Чтобы узнать текущую рабочую директорию в bash нужно набрать:

$ pwd
/


В примере с cd, аргумент / называется путь. Он сообщает cd куда мы хотим отправиться. В частности, аргумент / это абсолютный путь, что значит, что он задает расположение относительно корня дерева файловой системы.

Абсолютные пути

Ниже несколько из них:

/dev
/usr
/usr/bin
/usr/local/bin


Как можно заметить, у всех абсолютных путей есть одна общая черта, они начинаются с /. Указывая, допустим, /usr/local/bin в качестве аргумента для cd, мы сообщаем, что хотим попасть в / директорию, затем в usr директорию внутри нее, и так далее в local и bin, вниз по дереву. Абсолютные пути всегда отсчитываются начиная от / сперва.

Относительные пути

Другой тип пути называется «относительный путь». bash, cd, и другие команды всегда интерпретируют их относительно текущей директории. Относительные пути НИКОГДА не начинаются с /. Так, если мы сначала переместимся в /usr:

$ cd /usr


То, затем мы можем использовать относительный путь local/bin, чтобы попасть в директорию /usr/local/bin:

$ cd local/bin
$ pwd
/usr/local/bin


Использование ..

Относительные пути могут также содержать одну или более ".." директории. Директория ".." специальная; она указывает на родительскую директорию. Так, продолжая с примера выше:

$ pwd
/usr/local/bin
$ cd ..
$ pwd
/usr/local


Как видно, наша текущая директория теперь /usr/local. Мы смогли переместиться «назад» на одну директорию относительно текущей, где были до того.

Кроме того, мы также можем использовать ".." в существующем относительном пути, позволяющем нам переместиться в директорию «рядом» с той, в которой находимся:

$ pwd
/usr/local
$ cd ../share
$ pwd
/usr/share


Примеры относительных путей

Относительные пути могут быть чуточку более сложными. Ниже несколько примеров, попробуйте самостоятельно догадаться, где вы окажитесь после набора каждой из этих команд.

$ cd /bin
$ cd ../usr/share/zoneinfo

$ cd /usr/X11R6/bin
$ cd ../lib/X11

$ cd /usr/bin
$ cd ../bin/../bin


А теперь наберите их и проверьте свои предположения. ;)

Понимание .

Перед тем как мы закончим изучение cd, есть несколько моментов, которые необходимо прояснить. Во-первых, есть еще одна специальная директория ".", которая означает «текущая директория». Хотя она и не используется с командой cd, но часто используется для выполнения программы из текущей директории, как в следующем примере:

$ ./myprog


В данном случае будет запущена исполняемая программа myprog, находящаяся в текущей рабочей директории.

cd и домашняя директория

Если бы мы хотели переместиться в нашу домашнюю директорию, то могли бы набрать:

$ cd


Без каких либо аргументов cd переместит в вашу домашнюю директорию, которая будет /root для суперпользователя, или обычно /home/username (где username — имя пользователя в системе — прим.пер.) для любого другого пользователя. Но, что если мы хотим указать файл в нашей домашней директории? Может быть мы хотим передать путь к файлу в качестве аргумента нашей программе myprog. Если файл расположен в нашей домашней директории, мы можем набрать:

$ ./myprog /home/drobbins/myfile.txt


Однако, использования абсолютного пути вроде этого, не всегда удобно. К счастью, мы можем использовать символ ~ (тильда), чтобы проделать то же самое:

$ ./myprog ~/myfile.txt


Другие домашние директории пользователей

Bash воспримет одиночную ~ как указатель на вашу домашнюю директорию, но вы также можете использовать её для указания на домашние директории других пользователей. Например, если мы хотели сослаться на файл под названием fredsfile.txt в домашней директории пользователя fred, то могли бы набрать:

$ ./myprog ~fred/fredsfile.txt


Использование команд Linux

Знакомство с ls

А сейчас, мы быстренько пройдемся по команде ls. Скорее всего вы уже хорошо знакомы с этой командой, и знаете, что набрав ls получите список содержимого текущей рабочей директории:

$ cd /usr
$ ls

X11R6      doc         i686-pc-linux-gnu  lib      man          sbin   ssl
bin        gentoo-x86  include            libexec  portage      share  tmp
distfiles  i686-linux  info               local    portage.old  src


Указав опцию -a, вы можете увидеть полный список, включая скрытые файлы и директории, начинающиеся с ".". Как видно в следующем примере, ls -a выводит также особые связывающие директории "." и "..":

$ ls -a

.      bin        gentoo-x86         include  libexec  portage      share  tmp
..     distfiles  i686-linux         info     local    portage.old  src
X11R6  doc        i686-pc-linux-gnu  lib      man      sbin         ssl



Развернутые списки директорий

Вы также можете задать одну и более директорий или файлов в командной строке с ls. Если вы укажите файл, то ls покажет вам только этот файл. А если зададите директорию, то ls выдаст ее содержимое. Опция -l очень удобна, когда необходимо посмотреть права доступа, владельца, время последнего изменения и размер в списке содержимого директории.

В следующем примере мы использовали опцию -l чтобы отобразить содержимое моей директории /usr:

$ ls -l /usr


drwxr-xr-x    7 root     root          168 Nov 24 14:02 X11R6
drwxr-xr-x    2 root     root        14576 Dec 27 08:56 bin
drwxr-xr-x    2 root     root         8856 Dec 26 12:47 distfiles
lrwxrwxrwx    1 root     root            9 Dec 22 20:57 doc -> share/doc
drwxr-xr-x   62 root     root         1856 Dec 27 15:54 gentoo-x86
drwxr-xr-x    4 root     root          152 Dec 12 23:10 i686-linux
drwxr-xr-x    4 root     root           96 Nov 24 13:17 i686-pc-linux-gnu
drwxr-xr-x   54 root     root         5992 Dec 24 22:30 include
lrwxrwxrwx    1 root     root           10 Dec 22 20:57 info -> share/info
drwxr-xr-x   28 root     root        13552 Dec 26 00:31 lib
drwxr-xr-x    3 root     root           72 Nov 25 00:34 libexec
drwxr-xr-x    8 root     root          240 Dec 22 20:57 local
lrwxrwxrwx    1 root     root            9 Dec 22 20:57 man -> share/man
lrwxrwxrwx    1 root     root           11 Dec  8 07:59 portage -> gentoo-x86/
drwxr-xr-x   60 root     root         1864 Dec  8 07:55 portage.old
drwxr-xr-x    3 root     root         3096 Dec 22 20:57 sbin
drwxr-xr-x   46 root     root         1144 Dec 24 15:32 share
drwxr-xr-x    8 root     root          328 Dec 26 00:07 src
drwxr-xr-x    6 root     root          176 Nov 24 14:25 ssl
lrwxrwxrwx    1 root     root           10 Dec 22 20:57 tmp -> ../var/tmp



Первая колонка показывает информацию о правах доступа для каждого элемента. Чуть позже я объясню, как её интерпретировать. Следующая колонка содержит числа ссылок на каждый элемент файловой системы, позже мы вернемся к этому. Третья и четвертая колонки — это список владельцев и групп, соответственно. Пятая колонка — размер объекта. Шестая — время последнего изменения (mtime) объекта. И наконец, последняя колонка с именами объектов. Если файлы являются символическими ссылками, то вы увидите стрелку -> и путь, куда указывает эта символическая ссылка.

Смотрим на директории

Иногда вы захотите взглянуть на директорию, а не внутрь нее. В этом случае вы можете указать опцию -d, которая скажет ls рассматривать любую директорию, как внутреннюю:

$ ls -dl /usr /usr/bin /usr/X11R6/bin ../share

drwxr-xr-x    4 root     root           96 Dec 18 18:17 ../share
drwxr-xr-x   17 root     root          576 Dec 24 09:03 /usr
drwxr-xr-x    2 root     root         3192 Dec 26 12:52 /usr/X11R6/bin
drwxr-xr-x    2 root     root        14576 Dec 27 08:56 /usr/bin



Рекурсивный и инодный списки

Так вы можете использовать -d чтобы смотреть на директорию, но также можно использовать -R для противоположного: не только лишь глянуть внутрь директории, но и рекурсивно посмотреть все директории с файлами внутри нее! Мы не включим в руководство никакого примера вывода для этой опции (поскольку обычно он очень объемный), но возможно вы захотите попробовать несколько команд ls -R и ls -Rl, чтобы почувствовать как это работает.

Наконец, опция -i может использоваться для отображения числа инодов для объектов в списке файловой системы:

$ ls -i /usr

   1409 X11R6        314258 i686-linux           43090 libexec        13394 sbin
   1417 bin            1513 i686-pc-linux-gnu     5120 local          13408 share
   8316 distfiles      1517 include                776 man            23779 src
     43 doc            1386 info                 93892 portage        36737 ssl
  70744 gentoo-x86     1585 lib                   5132 portage.old      784 tmp



Понятие инода

Каждому объекту файловой системы назначен уникальный индекс, называемый номером инода. Это может показаться банальным, но понятие инодов очень важно для понимания большинства операций в файловой системе. Рассмотрим например ссылки "." и "..", которые появляются в каждой директории. Чтобы полностью понять, чем на самом деле является директория "..", мы сперва взглянем на номер инода у /usr/local:

$ ls -id /usr/local
5120 /usr/local

У директории /usr/local номер инода равен 5120. А теперь посмотрим номер инода у /usr/local/bin/..:

$ ls -id /usr/local/bin/..
5120 /usr/local/bin/..


Как видно, директория /usr/local/bin/.. имеет такой же номер, как у /usr/local! Посмотрим, как можно справиться с этим шокирующим откровением. В прошлом мы полагали, что /usr/local сама является директорией. Теперь же, мы обнаружили, что фактически директория — это инод с номером 5120, и нашли, по меньшей мере, два элемента (называемых «ссылками»), которые указывают на данный инод. И /usr/local, и /usr/local/bin/.. — ссылки на 5120-ый инод. Хотя этот инод и существует только в одном месте на диске, тем не менее на него может быть множество ссылок.

На самом деле, мы даже можем увидеть общее количество ссылок ведущих на этот, 5120 инод, используя команду ls -dl:

$ ls -dl /usr/local

drwxr-xr-x    8 root     root          240 Dec 22 20:57 /usr/local



Если взглянуть на вторую колонку слева, то видно, что на директорию /usr/local (инод 5120) ссылаются восемь раз. На моей системе на этот инод ведут следующие пути:

/usr/local
/usr/local/.
/usr/local/bin/..
/usr/local/games/..
/usr/local/lib/..
/usr/local/sbin/..
/usr/local/share/..
/usr/local/src/..


mkdir

Давайте быстренько пройдемся по команде mkdir, которая используется для создания новых директорий. Следующий пример создает три новых директории, tic, tac, и toe, все внутри /tmp:

$ cd /tmp
$ mkdir tic tac toe


По умолчанию, команда mkdir не создает для вас родительские директории; весь путь вплоть до последнего (создаваемого) элемента должен существовать. Так, если вы захотите создать вложенные директории won/der/ful, вам придется выполнить три отдельные команды mkdir:

$ mkdir won/der/ful
mkdir: cannot create directory `won/der/ful': No such file or directory
$ mkdir won
$ mkdir won/der
$ mkdir won/der/ful


Однако, у mkdir есть очень удобная опция -p, которая говорит mkdir создавать любые отсутствующие родительские директории, как можете увидеть тут:

$ mkdir -p easy/as/pie


В целом очень просто. Чтобы узнать больше о команде mkdir наберите man mkdir и прочитайте инструкцию. Это же касается почти всех команд, рассмотренных здесь (например man ls), исключая cd, которая встроена в bash.

touch

Сейчас мы собираемся окинуть взглядом команды cp и mv, используемые для копирования, переименования и перемещения файлов и директорий. Но начнем обзор воспользовавшись командой touch, чтобы создать файл в /tmp:

$ cd /tmp
$ touch copyme


Команда touch обновляет «mtime» (время последней модификации — прим. пер.) файла, если тот существует (вспомните шестую колонку в выводе ls -l). Если файл не существует, то новый, пустой файл будет создан. Сейчас у вас должен быть файл /tmp/copyme с нулевым размером.

echo

Теперь, когда файл существует, давайте добавим немного данных в него. Можно сделать это с помощью команды echo, которая принимает аргументы и печатает их на стандартный вывод. Сперва, команда echo сама по себе:

$ echo "firstfile"
firstfile


А сейчас, та же команда echo, но с перенаправлением вывода:

$ echo "firstfile" > copyme


Знак «больше» сообщает оболочке записывать вывод echo в файл по имени copyme. Этот файл будет создан, если не существовал, или перезаписан, если существует. Набрав ls -l, увидим, что файл copyme имеет размер в 10 байт, так как содержит слово firstfile и символ новой строки:

$ ls -l copyme

-rw-r--r--    1 root     root           10 Dec 28 14:13 copyme



cat и cp

Чтобы вывести содержимое файла на терминал, используйте команду cat:

$ cat copyme
firstfile


Сейчас, мы можем воспользоваться основным вызовом команды cp для создания файла copiedme из оригинального copyme:

$ cp copyme copiedme


Ниже проверим, что это действительно разные файлы; у них отличаются номера инодов:

$ ls -i copyme copiedme

  648284 copiedme   650704 copyme



mv

А сейчас давайте воспользуемся командой mv для переименования copiedme в movedme. Номер иноды останется прежний; однако, имя файла, указывающее на инод, изменится.

$ mv copiedme movedme
$ ls -i movedme

  648284 movedme



Номер инода у перемещаемого файла остается прежним до тех пор, пока файл назначения находится в той же файловой системе, что и исходный файл. Мы подробнее рассмотрим файловую систему в третьей части нашего руководства.

Пока мы рассказываем об mv, давайте посмотрим, как еще можно использовать эту команду. mv, помимо возможности переименовать файлы, позволяет перемещать один или более файлов в другое место в иерархии директорий. Например, чтобы переместить /var/tmp/myfile.txt в директорию /home/drobbins (которая является моей домашней), я наберу (а мог бы вопсользоваться ~ — прим. пер.):

$ mv /var/tmp/myfile.txt /home/drobbins


После этого myfile.txt будет перемещен в /home/drobbins/myfile.txt. И если /home/drobbins располагается в другой файловой системе, нежели /var/tmp, команда mv скопирует myfile.txt в новую файловую систему и удалит его из старой. Как вы уже могли догадаться, когда myfile.txt перемещается между файловыми системами, то myfile.txt на новом месте получает новый номер инода. Это все потому, что у каждой файловой системы свой независимый набор номеров инодов.

Мы также можем воспользоваться mv для перемещения нескольких файлов в одну директорию. К примеру, чтобы переместить myfile1.txt и myarticle3.txt в /home/drobbins, потребуется набрать:

$ mv /var/tmp/myfile1.txt /var/tmp/myarticle3.txt /home/drobbins


В этом отрывке рассмотрены жесткие и символьные ссылки, а также разобрано удаление файлов и директорий с помощью команд rm и rmdir.

Создание ссылок и удаление файлов

Жесткие ссылки

Мы уже упоминали термин «ссылка», когда рассказывали о взаимоотношениях между директориями (их именами) и инодами (индексным номерами, лежащими в основе файловой системы, которых мы не замечаем). Вообще в Linux существует два типа ссылок. Тип, о котором мы уже говорили ранее, называется «жесткие ссылки». Каждый инод может иметь произвольное число жестких ссылок. Когда уничтожается последняя жесткая ссылка, и не одна программа не держит файл открытым, то Linux автоматически удаляет его. Новые жесткие ссылки можно создать воспользовавшись командой ln:

$ cd /tmp
$ touch firstlink
$ ln firstlink secondlink
$ ls -i firstlink secondlink

  15782 firstlink    15782 secondlink



Как видите, жесткие ссылки работают на уровне инодов, для указания конкретного файла. В Linux системах, для жестких ссылок есть несколько ограничений. В частности, можно создавать жесткие ссылки только на файлы, не на директории. Да-да, именно так; хотя "." и ".." являются созданными системой жесткими ссылками на директории, вам (даже от имени пользователя «root») не разрешается создавать любые свои собственные. Второе ограничение жестких ссылок состоит в том, что нельзя связать ими несколько файловых систем. Это значит, что у вас не получится создать жесткую ссылку с /usr/bin/bash на /bin/bash и если ваши директории / и /usr находятся в разных файловых системах (разделах — прим. пер.).

Символьные ссылки

В практике, символьные ссылки (или символические, иногда «симлинки» — от англ.) используются гораздо чаще, чем жесткие. Симлинки — это файлы особого типа, которые ссылаются на другие файлы по имени, а не прямо по номеру инода. Они не спасают файлы от удаления; если файл, на который указывает ссылка, исчезает, то симлинк перестает работать, ломается.

Символические ссылки можно создать передав для ln опцию -s.

$ ln -s secondlink thirdlink
$ ls -l firstlink secondlink thirdlink

-rw-rw-r--    2 agriffis agriffis        0 Dec 31 19:08 firstlink
-rw-rw-r--    2 agriffis agriffis        0 Dec 31 19:08 secondlink
lrwxrwxrwx    1 agriffis agriffis       10 Dec 31 19:39 thirdlink -> secondlink



В выводе ls -l символьные ссылки можно отличить тремя способами. Во-первых, обратите внимание на символ l в первой колонке. Во-вторых, размер символической ссылки равен количеству символов в ней (secondlink в нашем случае). В-третьих, последняя колонка в выводе показывает куда ведет ссылка с помощью интуитивного обозначения "->".

Симлинки детально

Символические ссылки в целом более гибкие, чем жесткие. Вы можете создавать символьные ссылки на любой объект файловой системы, включая директории. И благодаря тому, что их реализация основана на путях (не инодах), можно совершенно свободно создать символьную ссылку указывающую на объект другой файловой системы. Однако, сей факт также делает их сложными в понимании.

Предположим, что мы хотим создать ссылку в /tmp, которая указывает на /usr/local/bin. Нам следует набрать:

$ ln -s /usr/local/bin bin1
$ ls -l bin1

lrwxrwxrwx    1 root     root           14 Jan  1 15:42 bin1 -> /usr/local/bin



Либо, альтернативный вариант:

$ ln -s ../usr/local/bin bin2
$ ls -l bin2

lrwxrwxrwx    1 root     root           16 Jan  1 15:43 bin2 -> ../usr/local/bin



Как вы видите, обе символические ссылки указывают на одну директорию. Однако, если наша вторая символьная ссылка когда-нибудь будет перемещена в другую директорию, то она может «поломаться» из-за относительности пути:

$ ls -l bin2

lrwxrwxrwx    1 root     root           16 Jan  1 15:43 bin2 -> ../usr/local/bin


$ mkdir mynewdir
$ mv bin2 mynewdir
$ cd mynewdir
$ cd bin2
bash: cd: bin2: No such file or directory


Потому, что директории /tmp/usr/local/bin не существует, мы больше не можем переместиться в bin2; другими словами, bin2 сейчас сломана.

По этой причине, избегать создания ссылок с относительной информацией о пути, иногда будет хорошей идеей. Тем не менее, существует множество случаев, где относительные символические ссылки крайне удобны. Рассмотрим пример в котором мы хотим создать альтернативное имя для программы в /usr/bin:

# ls -l /usr/bin/keychain

-rwxr-xr-x    1 root     root        10150 Dec 12 20:09 /usr/bin/keychain



От имени суперпользователя мы хотим короткий синоним для keychain, такой, как kc. В этом примере у нас есть root-доступ, о чем свидетельствует измененное на "#" приветствие bash. Нам нужен root-доступ потому, что обычные пользователи не имеют прав создавать файлы в /usr/bin. От имени суперпользователя мы можем создать альтернативное имя для keychain следующим образом:

# cd /usr/bin
# ln -s /usr/bin/keychain kc
# ls -l keychain

-rwxr-xr-x    1 root     root        10150 Dec 12 20:09 /usr/bin/keychain



# ls -l kc

lrwxrwxrwx    1 root     root           17 Mar 27 17:44 kc -> /usr/bin/keychain



В этом примере мы создали символьную ссылку под названием kc, которая указывает на файл /usr/bin/keychain.

Пока это решение будет работать, но создаст проблему, если мы решим переместить оба файла, /usr/bin/keychain и /usr/bin/kc в /usr/local/bin:

# mv /usr/bin/keychain /usr/bin/kc /usr/local/bin
# ls -l /usr/local/bin/keychain

-rwxr-xr-x    1 root     root        10150 Dec 12 20:09 /usr/local/bin/keychain



# ls -l /usr/local/bin/kc

lrwxrwxrwx    1 root     root           17 Mar 27 17:44 kc -> /usr/bin/keychain



Поскольку мы использовали абсолютный путь для символической ссылки kc, то она все еще ссылается на /usr/bin/keychain, которого не существует с тех пор как мы переместили /usr/bin/keychain в /usr/local/bin.

Это привело к тому, что симлинк kc сейчас не работает. Как относительные, так и абсолютные пути в символьных ссылках имеют свои достоинства, и, в зависимости от вашей задачи, нужно использовать соответствующий тип пути. Часто, и относительный, и абсолютный путь, будут работать одинаково хорошо. Пример ниже будет работать, даже после перемещения обоих файлов:

# cd /usr/bin
# ln -s keychain kc
# ls -l kc

lrwxrwxrwx    1 root     root            8 Jan  5 12:40 kc -> keychain



# mv keychain kc /usr/local/bin
# ls -l /usr/local/bin/keychain

-rwxr-xr-x    1 root     root        10150 Dec 12 20:09 /usr/local/bin/keychain



# ls -l /usr/local/bin/kc

lrwxrwxrwx    1 root     root           17 Mar 27 17:44 kc -> keychain



Теперь, мы можем запустить программу keychain набрав /usr/local/bin/kc. /usr/local/bin/kc указывает на программу keychain в той же директории, где находится kc.

rm

Итак, мы знаем как использовать cp, mv и ln, настало время узнать о том, как можно удалять объекты из файловой системы. Обычно это делается с помощью команды rm. Чтобы удалить файлы, просто укажите их в командной строке:

$ cd /tmp
$ touch file1 file2
$ ls -l file1 file2

-rw-r--r--    1 root     root            0 Jan  1 16:41 file1
-rw-r--r--    1 root     root            0 Jan  1 16:41 file2



$ rm file1 file2
$ ls -l file1 file2
ls: file1: No such file or directory
ls: file2: No such file or directory


Имейте ввиду, что под Linux, однажды удаленный файл, обычно исчезает на века. Поэтому многие начинающие системные администраторы используют опцию -i, когда удаляют файлы. Опция -i сообщает rm удалять файлы в интерактивном режиме — это значит спрашивать перед удалением любого файла. Например:

$ rm -i file1 file2
rm: remove regular empty file `file1'? y
rm: remove regular empty file `file2'? y


В примере выше команда rm запрашивает подтверждение на удаление каждого из указанных файлов. В случае согласия, я должен был вводить «y» и нажать enter, дважды. Если бы я ввел «n», то файл бы остался цел. Или, если я сделал что-нибудь не так, я мог бы нажать Control-C и сбросить выполнение команды rm -i целиком — всяко до того, как это могло нанести какой-нибудь ущерб моей системе.

Если вы все еще учитесь пользоваться командой rm, то может быть полезным добавить при помощи вашего любимого текстового редактора следующую строку в ваш файл ~/.bashrc, и затем выйти (logout) и войти (login) в систему вновь. После этого, всякий раз, когда вы наберете rm, оболочка bash преобразует ее автоматически в команду rm -i. Таким образом, rm будет всегда работать в интерактивном режиме:

alias rm="rm -i"


rmdir

Для удаления директорий у вас имеется два варианта. Вы можете удалить все объекты внутри директории и затем воспользоваться rmdir для удаления самой директории:

$ mkdir mydir
$ touch mydir/file1
$ rm mydir/file1
$ rmdir mydir


Этот метод широко известен под названием «способ удаления директорий для лохов». Все реальные пацаны и админы-гуру съевшие пользователя собаку на этом деле, используют гораздо более удобную команду rm -rf, описанную далее.

Самый лучший способ удалить директорию состоит в использовании опций «рекурсивного принуждения» (recursive force) команды rm, чтобы приказать ей удалять указанную директорию, также как и объекты содержащиеся внутри:

$ rm -rf mydir


Обычно, rm -rf является наиболее предпочтительным методом для удаления древа директорий. Будьте очень осторожны, когда пользуетесь rm -rf, так как ее мощь может быть использована по обе стороны: добра и зла. =)

Использование джокеров

Знакомство с джокерами

В повседневном использовании Linux часто случается, когда вам нужно выполнить единичную операцию (например rm) на множестве объектов файловой системы за раз. В подобных ситуациях вписывать множество файлов в командную строку, зачастую, довольно обременительно:

$ rm file1 file2 file3 file4 file5 file6 file7 file8


Для решения этой проблемы, вы можете извлечь пользу из встроенной в Linux поддержки джокеров. Эта поддержка также называется «globbing» (по историческим причинам; в русском также известно как «универсализация файловых имен» — прим. пер.), позволяет указать множество файлов за раз, используя «шаблон дикой кошки». Bash и другие команды Linux интерпретируют этот шаблон просматривая диск в поисках файлов, которые ему удовлетворяют. Так, если у вас есть файлы file1 до file8 в текущей рабочей директории, то можете их удалить набрав:

$ rm file[1-8]


Или если просто хотите удалить все файлы с именами начинающимися с file, включай сам файл по имени file, вы можете набрать:

$ rm file*


Дикая кошка "*" совпадает с любым символом или набором символов, или даже с их отсутствием. Разумеет, glob-джокеры возможно использовать для гораздо большего, чем простое удаление файлов, как мы увидим в дальнейшем.

Неподходящие шаблоны

Если вам необходимо перечислить все объекты файловой системы в /etc, начинающиеся с «g», а также сам g, то можно ввести:

$ ls -d /etc/g*

/etc/gconf  /etc/ggi  /etc/gimp  /etc/gnome  /etc/gnome-vfs-mime-magic  /etc/gpm  /etc/group  /etc/group-



А сейчас о том, что случится если вы укажите шаблон, который не подходит ни под один объект файловой системы. В следующем примере мы попытались перебрать все файлы в /usr/bin, которые начинаются с «asdf» и оканчиваются на «jkl», потенциально включая и asdfjkl:

$ ls -d /usr/bin/asdf*jkl
ls: /usr/bin/asdf*jkl: No such file or directory


Вот что случится. Обычно, когда мы задаем шаблон, и если в него укладываются один или несколько файлов в подразумеваемой файловой системе, то bash заменяет наш шаблон на разделенный пробелами список всех подходящих объектов. Однако, когда с шаблоном нет совпадений, bash оставляет переданный аргумент с джокерами как есть. Так вот, затем ls не может найти файл /usr/bin/asdf*jkl и выдает нам ошибку. Основное правило тут такое: glob-шаблоны разворачиваются только если совпадают с объектами файловой системы. В противном случае, остаются не тронутыми и буквально передаются в вызов программы.

Синтаксис джокеров: * и ?

Так, мы уже посмотрели как работает globbing, теперь же стоит рассмотреть синтаксис джокеров. В качестве джокеров используются специальные символы:

* — совпадает с нулевым или большим количеством символов. Это значит: «тут может быть все что угодно, включая и ничего». Примеры:

* /etc/g* совпадает со всеми файлами в /etc, начинающимися с g и самим файлом g;
* /tmp/my*1 совпадает со всеми файлами в /tmp, которые начинаются с my и заканчиваются 1, включая файл my1.

? — равен любому одному символу. Примеры:

* myfile? совпадает с любым файлом, чье имя составляет myfile и следующим за этим какой-либо один символ;
* /tmp/notes?txt совпадет, например, с /tmp/notes.txt и /tmp/notes_txt, если они существуют.

Синтаксис джокера: []

Этот джокер похож на ?, но более точен. Чтобы его использовать, поместите любые символы, какие вам нужны, внутрь []. Полученное выражение будет удовлетворять любому одному из этих символов. Вы также можете воспользоваться "-", для указания диапазона, и даже комбинации диапазонов. Примеры:

* myfile[12] совпадет с myfile1 и myfile2. Джокер сработает если хотя бы один из этих файлов существует в текущей директории;
* [Cc]hange[Ll]og совпадет с Changelog, ChangeLog, changeLog и changelog. Как можете заметить, использование скобочных джокеров очень удобно для указания вариантов с заглавными буквами;
* ls /etc/[0-9]* покажет все файлы в /etc, начинающиеся с десятичной цифры;
* ls /tmp/[A-Za-z]* отобразит все файлы в /tmp, которые начинаются с большой или маленькой латинской буквы.


Конструкция [!] эквивалентна конструкции [], за исключением того, что вместо совпадения с символами внутри скобок, она удовлетворяет любому символу, который НЕ перечислен между [! и ]. Пример:

* rm myfile[!9] удалит все файлы с названием myfile плюс один символ, кроме myfile9.


Предостережения о джокерах

Сейчас несколько предостережений, чтобы быть осторожными во время использования джокеров. Поскольку bash обрабатывает относящиеся к джокерам символы (?, [, ] и *) особым образом, вам надо особенно позаботиться, когда вы пишите аргумент для команды, содержащий эти символы. Например, если вы хотите создать файл, содержащий строку "[fo]*", то следующая команда может не дать желаемого результата:

$ echo [fo]* > /tmp/mynewfile.txt


Если шаблон [fo]* совпадет с какими-либо файлами в текущей рабочей директории, то вы обнаружите их имена внутри /tmp/mynewfile.txt, вместо ожидаемого [fo]*. Решение? Ну, одним из них будет огородить ваши символы в одиночные кавычки, которые сообщат bash не делать никаких раскрытий джокеров в них:

$ echo '[fo]*' > /tmp/mynewfile.txt


Используя этот подход, ваш новый файл будет содержать [fo]* буквально, как и предполагалось. Также, вы можете использовать экранирующую обратную косую черту, чтобы сообщить bash, что [, ] и * должны интерпретироваться буквально, а не как джокеры:

$ echo \[fo\]\* > /tmp/mynewfile.txt


Оба подхода (одиночные кавычки и экранирующая обратная косая черта) работают с одинаковым эффектом. Поскольку мы заговорили про обработку обратной косой черты, то неплохо бы было сейчас прояснить, что на случай, если вы хотите указать \ буквально, можно либо также взять ее в одиночные кавычки, либо набрать \\ (это будет обращено в \).

Примечание:

Двойные кавычки работают также как и одиночные, но всё еще разрешают bash делать некоторую ограниченную обработку. Следовательно, одиночные кавычки — ваш лучший выбор, если вы действительно заинтересованны в буквальной передаче текста в команду. Получить больше информации о раскрытии джокеров можно набрав man 7 glob. Чтобы получить больше информации о кавычках в bash, наберите man 1 bash и прочитайте раздел под названием QUOTING. Если в ваши планы входит сдача экзаменов LPI, то рассматривайте это как свое домашнее задание. =)

Подведение итогов и ссылки на другие ресурсы

Итог

Поздравляем; Вы добрались до конца нашего обзора об основах Linux! Я надеюсь, что это помогло вам укрепить свои фундаментальные познания в Linux. Темы, которые вы здесь изучили, включая основы работы в bash, основные команды Linux, ссылки и джокеры — заложили фундамент для нашего следующего пособия об основах администрирования, в котором мы рассмотрим такие темы, как регулярные выражения, принадлежность и права доступа, управления аккаунтами пользователей, и многое другое.

Продолжая погружаться в эти учебные пособия, вы скоро достигните LPIC Level 1 сертификации от Linux Professional Institute. Говоря об этой сертификации, если это действительно то, в чем вы заинтересованы, мы рекомендуем вам изучить ресурсы из параграфа ниже, которые были внимательно подобраны к материалу освещенному в этом руководстве.

Ссылки

В серии статей «Bash в примерах», Дэниэль показывает как использовать программные конструкции bash для написания ваших собственных bash-скриптов. Эта серия (в основном 1 и 2 части) будет отличной подготовкой для LPIC Level 1:

  • Bash в примерах, Часть 1: Основы программирования в Bourne-again shell — на английском, перевод на русский ожидается
  • Bash в примерах, Часть 2: Ещё больше об основах программирования в bash — на английском, ждите перевода
  • Bash в примерах, Часть 3: Рассматриваем систему ebuild-ов — на английском, перевод будет